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ABSTRACT
Monitoring and debugging modern cloud-based applications is chal-

lenging since even a singleAPI call can involvemany interdependent

distributedmicroservices. To provide observability for such complex

systems, distributed tracing frameworks track request flow across

the microservice call tree. However, such solutions require instru-

menting every component of the distributed application to add and

propagate tracing headers, which has slowed adoption. This paper

explores whether we can trace requestswithout any application in-
strumentation, which we refer to as request trace reconstruction. To

that end,wedevelopTraceWeaver, a system that incorporates readily

available information fromproductionsettings (e.g., timestamps)and

test environments (e.g., call graphs) to reconstruct request traceswith

usefully high accuracy. At the heart of TraceWeaver is a reconstruc-

tion algorithm that uses request-response timestamps to effectively

prune the search space for mapping requests and applies statistical

timing analysis techniques to reconstruct traces. Evaluation with

(1) benchmark microservice applications and (2) a production mi-

croservice dataset demonstrates that TraceWeaver can achieve a

high accuracy of ~90% and can be meaningfully applied towards

multiple use cases (e.g., finding slow services and A/B testing).
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1 INTRODUCTION
Modern “cloud native” applications built using a microservice archi-

tecture split their functionality into small logical units, which can be

deployed as containers and automatically scaled (i.e., dynamically

replicated to meet demand) with cluster management platforms

like Kubernetes. Compared to monolithic applications, individual

microservices are more manageable to build and maintain, easier

to individually re-deploy in new versions, and easier to write in

different languages and frameworks. The result is that modern ap-

plications are highly distributed, potentially involving hundreds or

even over a thousand [47] individual microservice instances.

Unfortunately, such highly distributed applications are challeng-

ing to operate and debug [16, 18]. For example, an operatormaywish

to determine which service is responsible for inflating latency for a

certain user-facing API call for a specific subset of traffic. But an API

call may produce children, i.e., further API calls to other services is-
sued in order to handle the parent call. The resulting tree of API calls

may ultimately comprise many stages of backend calls to various

services, making it hard to isolate the component responsible for a

particular problem. For such troubleshooting, it is indispensible to

have a request trace, which we define as a record of each request
(API call) into a microservice, and recursively all requests that it

spawns (children, children of children, etc.) to other microservices.

That is, each record within the trace includes a start and finish time

(known as a “span”) and pointers to its child request records.

Distributed tracing frameworkssuchas Jaeger [35]andZipkin[63],

along with commercial solutions like Instana [33] and Datadog [23]

and earlier research proposals like XTrace [27], help developers deal

with the above problem. Because network communication is exter-

nally visibile, it is easy for such frameworks to automatically log

requests between microservices as isolated events, i.e., individual
spans. But to produce full request traces, such systems require appli-

cation developers to instrument their code, carrying identifiers that

associate each request with its children, which is known as context
propagation. Even within a single service, instrumentation is needed

at a module level to track execution flow, requiring a context object

to be passed as an argument when modules are invoked [44].

This application-level code modification is required for request

tracing, no matter what underlying communication framework is

used by the application (Apache Thrift [1], gRPC [2], etc.). Only the

application-level modules can track the execution flow (i.e. which
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incoming request spawns which outgoing requests). This context-

specific information cannot be automatically made available to the

underlying communication frameworks without any application

support. The code modification for context propagation can involve

a considerable investment of time, given dozens or hundreds of

microservices written by different teams. Somemicroservices can

be more challenging (e.g., legacy apps) or completely impossible

to modify (e.g., proprietary, binary code), resulting in incomplete

request traces. Even when feasible, adding tracing instrumentation

is often buried under a long list of feature requests. This is onemajor

factor
1
that has limited adoption.

In this paper, we pose the question: to what extent can we accu-

rately produce request traces without instrumenting applications?

We refer to this problem as non-intrusive request tracing.
There is a large body of work on distributed tracing, that tackles

a different, but related, problem – inferring that service X tends

to depend on service Y, either using individual span-level informa-

tion [15, 20, 48] or relying on request traces generated via context

propagation [21]. In contrast, with non-intrusive request tracing,

we seek finer-grained information about which specific requests re-

sulted in which other specific requests, without relying on any appli-

cation support (context propagation). This is usually more valuable

(e.g., to debug problems with specific requests, or important groups

of requests) but also fundamentally more challenging. Applications

concurrently serve many incoming requests, making it difficult to

determine which incoming requests led to which child requests.

Non-intrusive request tracing therefore remainsanunsolvedprob-

lem that is highly desired by industry [14]. A few existing proposals

do attempt to tackle this problem [51, 54], but make several simpli-

fying assumptions about the application threading models, which

severely restricts their applicability. Our work, in contrast, seeks a

more general solution that is not tied to a specific threading model.

Our approach is based on two observations. First, while it might

not be possible to construct fully accurate request traces without

leveraging application support or without making restrictive as-

sumptions about the application’s threadingmodel [51, 54], even ap-
proximate request tracing (with good enoughaccuracy) canbehighly
useful. If accuracy is reasonably high, or if the user is presented with

a small number of possible traces, one ofwhich is indeed correct, this

can dramatically accelerate performance debugging compared with

having no information about a request’s trace. Moreover, many pro-

filing tasks don’t require every individual trace to be reconstructed
correctly; often, users want to understand a sub-population of re-

quests – for example, what is the per-service processing latency for

requests in the worst 5% end-to-end latency bracket? Or, what is the

typical performance profile of a high profile user’s latency-sensitive

query type? These questions may be meaningfully answered even

if individual traces have some occasional error.

Our second observation is that modern microservice environ-

ments provide new avenues for collecting useful information that

we can leverage for non-intrusive request tracing. In particular, even

though we treat the application itself as unmodifiable, we can see

detailed information about the communication in and out of the

application, e.g. through service mesh sidecars or eBPF hooks. We

1
Others include cost of commercial solutions and performance overhead.

detail how such tools can be effectively used to obtain span infor-

mation (map an incoming request to the corresponding outgoing

response, and get the request-response timestamps).Moreover, mod-

ern packaging of applications for Kubernetes environmentsmakes it

feasible to spin up applications in test environments, where they can

be observed in a controlled way. We can leverage such test environ-

ments to infer the call graph, i.e. the sequence of backend services

that an incoming request at a given service invokes.

We develop a system, TraceWeaver, that obtains the above infor-

mation (span timings, call graph)anduses it fornon-intrusive request

tracingwith usefully high accuracy. TraceWeaver is centered around

a trace reconstruction algorithm that combines constraints obtained

from the knowledge of the call graph and span timings to prune the

candidate search space, along with soft statistical timing heuristics

to map the incoming requests at each service with likely potential

child requests. In particular, we estimate the timing distributions

between parent and child requests, use it to score feasible parent-

childmappings, and then select thehighest-scoring feasiblemapping

by encoding it as a maximum independent set problem. But there

is a chicken-and-egg problem – how do we even know the timing

distribution between parent and child requests without knowing the

mapping?We tackle this using an iterative joint estimation process

to discover both the timing distribution and the mappings, which

quickly converges to an accurate result. Finally, we augment our ap-

proach to accommodate a limited extent of dynamics in the call graph.

Inourevaluationusingapplications fromtheDeathStarBench[28]

benchmarking suite, we find that the best performing baseline ap-

proach has 70% accuracy in reconstructing traces, while our tech-

niques boost this to 93%. Our preliminary analysis on a production

dataset from Alibaba [12] running several customer-facing applica-

tions showcases a high accuracy in the range of 80%-99% even under

variable, high system loads. Even though this is imperfect, Trace-

Weaver’s trace reconstruction may already be useful for a variety of

tasks. We demonstrate two use cases: determining which back-end

service caused a particular subset of API calls to be slow, and detect-

ing changes in a service’s performance profile while A/B testing.

However, we believe this is not the end of the story: we expect

accuracy could be pushed increasingly high, in increasingly difficult

environments, by incorporating more information into our recon-

struction framework (e.g., commonalities in request contents). We

describe such necessary and promising directions in future work

(§7). Overall, we believe non-intrusive request tracing is a promising

way to provide developers with a “free” debugging tool, without

additional effort on their part. This work does not raise any ethical

concerns.

2 PROBLEMDESCRIPTION
2.1 Terminology
We refer to Figure 1 (representing a microservice based application)

to explain the terms used throughout the paper.

Span. A span is a request-response pair that represents one exe-

cution of an API call at a running service instance, with metadata

comprising caller, callee, start time, end time, and API endpoint (a

specific URL where clients send requests to interact with a server’s

functions [56]). In theaboveexample, (𝑅1,𝑅8), (𝑅2,𝑅5) etc., are spans.
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Figure 1: Call graph for an example application.

Call graph.At each service X, the call graph describes which other
services are contacted by X to answer an incoming request. In Fig-

ure 1, as per the call graph, A talks to B and C to handle requests.

Dependencyorder.Ateach serviceX,we refer to theorder inwhich
backend calls are made as the dependency order at X. For the above
example, the dependency order at A is the following – to respond to

an incoming request, A calls B andC sequentially and once it receives
a response from C, it returns a response. Similarly, the call graph at

B is – to answer a request, B calls D and E in parallel and returns a
response once it hears back from D and E.

Parent-child relationship.Aparent-child relationship𝑅1→𝑅2 in-

dicates that in the course of processing𝑅1, the microservice invoked

𝑅2. In the above example, in order to process and respond to the in-

coming request 𝑅1, A calls service B (𝑅2). Once it gets a response 𝑅5

from B, it calls service C (𝑅6). Once it receives the response 𝑅7 from

C, it does some processing of its own and returns the response 𝑅8 to

the user. This makes the requests 𝑅2 and 𝑅6 children of 𝑅1. Likewise,

at Service B, follow-up requests 𝑅3 and 𝑅
′
3
(
′
implies parallel calls)

are children of the corresponding request 𝑅2.

Request trace. A trace of a request 𝑟 includes 𝑟 and its response

along with the records of the full tree of its descendants. The record

for each request within the trace includes its span information (i.e.,

the caller, callee, API endpoint, start, and end time) and pointers to its

child request records. In the above example, the root span startswhen

request 𝑅1 arrives at front-end service node A (generally invoked by

an external client), and ends when the corresponding response 𝑅8 is

returned. The remaining spans involve subsequent request-response

pairs, e.g 𝑅2-𝑅5, 𝑅3-𝑅4, etc. which are child spans of the 𝑅1-𝑅8 pair.

What is visible? Of the information listed above, we can readily

obtain the span metadata (through eBPF, service mesh sidecars, etc).

We can further infer the call graph (from production data or isolated

test environments).We detail how such information can be obtained

in §5. However, the parent-child relationships, and therefore the

request trace, are not visible. That is the crux of the problem in this

paper, as we discuss in more detail next.

2.2 Request Tracing
The key problemwe target in this paper is whether we can construct

complete request traces, i.e. map each request arriving at each service

with the corresponding child requests. In the context of our example,

we wish to map 𝑅1 to 𝑅2 and 𝑅6 at𝐴; 𝑅2 to 𝑅3 and 𝑅
′
3
at 𝐵, and so on.

We refer to this problem of obtaining individual request traces for

all requests as request tracing.

2.2.1 Why is request tracing useful? Tracking the journey of a re-

quest through several components of a distributed application, that

work in tandem to generate a response, is critical for various debug-

ging and troubleshooting tasks. For example, let’s say an operator is

interested in knowingwhichmicroservice ismajorly contributing to

the delay for a small set of high priority client requests. To produce

the answer, one must be able to map which backend requests were

made to produce the response, for each of those high priority re-

quests at each service.We detail more such use cases in §6, including

A/B testing.

2.2.2 Why is instrumentation-based request tracing hard? One way

to keep track of a request’s journey through the application is to

instrument all service components so that a unique context identifier,
attached to an incoming request, is carried onto any requests to

backend services that result from the incoming request. For example,

𝑅1 carries a unique identifier that service𝐴 propagates to 𝑅2, from

which service𝐵 propagates to𝑅3, and so on. This is known as context
propagation, and has been extensively explored through an active
line of research [27, 35, 36, 39, 52, 63]. Given support for context

propagation, spans from each microservice can be grouped by their

context identifiers and spans with the same identifier can be stitched

together to form a request trace.

Such context propagation must be inherently supported in the

application logic, since only the application can track the execution

flow across function boundaries. It cannot be provided as a plug-

in feature by the underlying frameworks (e.g. the service mesh or

RPC frameworks) which do not have the required visibility into the

application logic and its internal execution flow (see Figure 2a).

Although copying identifiers seems simple at first glance, it in-

volvesmajor practical hurdles: all software components, maintained

by different teams or different vendors, have to appropriately prop-

agate context. This involves agreeing on an API to use consistently,

but more importantly, instrumenting internal microservice code to

carry identifiers across function calls and data structures.

OpenTelemetry [43] defines a standard API and distributed trac-

ing frameworks like Jaeger and Zipkin (and other commercial solu-

tions) provide instrumentation tools for context propagation, either

in common libraries or via hooks that developers can explicitly call.

However, it is up to individual app developers to use the APIs or

leverage the available tools, and context propagation continues to be

a difficult task that increases app development burden. As a result, it

has seen limited adoption, especially for legacy applications which

require significant developer effort to modify existing code (only

20% of enterprise applications, as of 2021 [53]). Furthermore, an

application could use proprietary third party service components

which may not be possible to instrument.

If software components have not yet been instrumented to prop-

agate context, one could use program analysis techniques to auto-

matically modify software components so that they pass request

context. This approach, taken by systems such as [25], is error-prone

and still requires developers to go through the changes suggested by

the tool and approve them. Other approaches, such as Border-Patrol

[37], require middleware instrumentation to modify event streams

to run them sequentially at specific observation points for precise

mapping, which results in high-performance penalties (10-15%) and

makes them infeasible.

2.2.3 Non-intrusive request tracing. In the absence of context propa-
gation, another strategy to construct request traces is to infer it based
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on the available information. Specifically, one can match incoming

requests at a service, say A, to outbound requests from A based on

span metadata, thread-level data, or header parameters. One benefit

of this approach is that it requires very little from app developers.

This approach, which we refer to as non-intrusive request tracing, is
the subject of our work.

2.2.4 Existing approaches for non-intrusive request tracing. Existing
works such as vPath [54] and DeepFlow [51] solve non-intrusive re-

quest tracing for a restrictive set of applications assuming a specific

threading model for the application. Specifically, for the threading

model, it is assumed that there are no hand-offs between threads

and no asynchronous calls, so that every outgoing request from a

thread can be mapped to the most recent network event (request/

response) picked up by that thread. Using this assumption, vPath

(and DeepFlow) can record the thread 𝑡 that picked up a request 𝑟𝑖𝑛
and for any subsequent request 𝑟𝑜𝑢𝑡 sent by 𝑡 , until 𝑡 picks up the

next request, associates 𝑟𝑖𝑛 with 𝑟𝑜𝑢𝑡 . While this scheme is effective

for applications that follow this threading model, these assumptions

do not hold for several common application types – applications

that hand over requests to communication threads of RPC libraries

such as Thrift [1] or gRPC [2], or applications which employ event-

driven, asynchronous communication to perform non-blocking I/O

operations such as in Node.js [8] apps. For example, as illustrated

in Figure 2b, due to non-blocking disk I/O behavior (1b, 2b) in the

second case, the “next” (1st) outgoing event is an outgoing backend

request (1c) due to the 1st request (1a) even though 2nd request is

the last outstanding incoming request (2a). vPath (and DeepFlow)

would incorrectly map 2a to 1c in this case.

2.2.5 Employing sidecars, eBPF hooks, or having access to the call-
graph alone is insufficient. While infrastructure technologies like

service meshes [34] and eBPF [26] can be valuable for observability,

they are insufficient to solve the tracing challenge. Servicemesh side-

cars handle communication functions [13] such as load balancing,

and retries and can intercept all traffic, enabling request observation/

modification without altering the app code. eBPF, on the other hand,

can run programs in the OS kernel, allowing monitoring/ manipu-

lation of system operations, such as network syscalls, with minimal

overhead. Despite their usefulness, they alone cannot solve the trac-

ing problem because if a sidecar (or an eBPF program) adds custom

headers to an incoming request (e.g., as shown in Figure 2a), there

is no guarantee that the application will propagate these headers

to related outgoing backend requests. Without the propagation of

these headers, linking the requests becomes impossible. Addition-

ally, merely having access to the call graph – the set of backend

services and their order queried by the application for a request – is

inadequate as well. This limitation arises because multiple requests

can concurrently traverse the same call graph,making it challenging

to disambiguate requests solely based on call graph knowledge.

2.2.6 Our approach. We seek a more general solution for non-

intrusive request tracing that is not restricted to specific threading

models. Our solution, TraceWeaver, obtains visible information (call

graph and span timings) using various avenues provided by mod-

ern microservice environments (e.g. eBPF hooks, sidecar proxies,

App Server 
(contents hidden)

time

Req. 1

Req. 2

Sidecar or 
RPC library 
(visible) 2a 1b 2b 2c 1c

Backend server

Possible mapping #1

2d 1d

Incoming 
requests

Child 
requests

1a

Child 
responses

Outgoing 
Responses

Async I/O 

1a 2a

Disk

2c1c

1b

2b

Sync I/O

1a 2a

Disk

2c1c

1b
2b

Possible mapping #2

Node.js
thread

Normal
thread

(a)

(b)

Figure 2: (a) Request forwarding chain shows how even a
proxy or RPC library cannot discern the right mapping (1
or 2) as it is buried in app logic. (b) Non-blocking I/O in the
second case (right) results in vPath/ DeepFlow’s assumption
(last incoming network event causing next outgoing network
event in a thread) to break.

test environments etc). It then applies a novel timing analysis algo-

rithm to construct approximate request traces from this information.

TraceWeaver can be applied to each service individually, and can

also co-exist with other solutions for non-intrusive request tracing

(e.g., if a partial trace is available because some services propagate

context or some services satisfy the assumptions ofDeepFlow/vPath,

TraceWeaver could fill in the gaps to complete the trace).

2.3 Related Problems: How they differ?
Several works under the umbrella term “distributed tracing” solve a

variety of problems distinct from request tracing. One such problem,

thatmultiple existingworks try to tackle, is toobtain the service-level

dependencies such as service A calls service B to answer inbound

requests atAbut not vice-versa.We refer to this problemof obtaining

dependencies between services as “dependency mapping”. The Mys-

tery Machine [21] is a system for dependency mapping. It assumes

context propagation and uses the request-traces thus obtained to

derive a model of how services talk to each other. As discussed in

§2.2.2, context propagation is burdensome for developers and hence

has limited adoption in the real-world. Orion [20], Sherlock [15]

andWAP5 [48] also tackle dependency mapping – they take as in-

put span level data, and obtain the dependencies between services

via analyzing delays in network traffic between when A receives a

request and when A talks to B.

In contrast to dependency mapping, for request tracing, we seek

finer-grained request traces, linking a specific request inbound at

service A to another specific request outbound fromA (and similarly

at other services). Request tracing is more valuable than dependency

mapping since request traces can be used to analyze performance

of a single request or, more generally, any subset of requests. At the

same time, disambiguating between far more numerous possibilities
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Figure 3: The distinct phases in TraceWeaver’s system.

for request traces for every single request is fundamentally more

challenging than finding which other services a particular service

depends on.We tried to repurpose one of the above dependencymap-

ping systems, WAP5, for non-intrusive request tracing and found its

accuracy to be low (§6). Sherlock and Orion employ similar analysis,

hence we expect them to have the same problems asWAP5.

Many systems take as input request traces, and analyze them to

improve various aspects of the system. For instance, Snicket [17]

optimizes sampling of request traces based on developer queries for

efficient storage. [62] uses logs from services, taggedwith identifiers,

to learn models that can help in various storage related decisions.

DQBarge [22] injects critical system information (e.g. load) onto

requests, which is passed around so that services can optimize for

quality/performance trade-off. All of the above systems assume ca-

pabilities similar to context propagation, but they can be used in

conjunction with non-intrusive request tracing which can make

request-traces available for their analysis.

3 TRACEWEAVEROVERVIEW
We enumerate the components of TraceWeaver (Figure 3):

Obtaining the inputs. To reconstruct traces, TraceWeaver requires

live span data from running apps and the call graphs the spans follow,

along with the dependency order (§ 2.1). TraceWeaver uses eBPF

to hook onto networking syscalls (e.g., accept, recv, send, close) to

collect live span information (caller, callee, API endpoint, start time,

and end time). The call graphs and the dependency order can be pro-

vided directly by the operator (optional) or deduced by running tests

on spans collected in a test environment. §5 describes more details.

Preprocessing. If operator-provided call graphs are available, Trace-
Weaver identifies dependencies by analyzing them. In their absence,

spans generated in a test environment are used. Using these spans,

TraceWeaver can learn two distinct types of dependencies regarding

the application at each service 𝑆 : (a) call graph: which other backend

servicesdoes𝑆 call and (b)dependencyorder: thesequence inwhich𝑆

calls thesebackend services.Thesedependencies serveas constraints

which allow TraceWeaver to identify candidatemappings (the set of

outgoing requests whose timings respect dependency requirements)

for each request. Note, the preprocessing is run once and re-run only

if the application is updated. We provide more details in §5.

Trace Reconstruction.Under large enough request arrival rates,
each incoming request at service 𝑆 can map to many different can-

didate outgoing requests for each backend service 𝑆 calls. Our trace

reconstruction algorithm (detailed in §4) scores and ranks these

candidates to find the best mapping.

Using the output.While the output traces can be inspected indi-

vidually for insights, learning aggregate statistics about application

performance is another class of use case that is extremely useful

in practice. For this, an operator specifies a filter which selects a

subset of mapped traces that collectively form an “aggregate” trace,

representing that subset’s behaviour. A large class of use caseswhich

leverage such aggregate traces can be derived from such a setup. For

example, analyzing subset of traces that suffer tail latency to identify

which straggler service(s) are responsible for delay inflation. An-

other interesting example is running an A/B test where comparing

the performance of a subset of traces that used version B instead of

A is useful. We showcase these use cases in §6.4.

Deploymentmodes. TraceWeaver allows for both offline and on-

line deployment modes. In offline mode, spans are collected and

stored to analyze on demand. In online mode, spans are passed to

a running TraceWeaver instance which constructs request traces in

real-time (detailed in §5.3).

4 TRACEWEAVERALGORITHM
Inputs.Our reconstruction algorithm uses the following inputs (we

detail howwe obtain them in §5):

(1) Span information comprising the request-response pairs (e.g.,

𝑅1-𝑅8 pair from Figure 1) and the timing information.

(2) The call graph and the dependency order at each service.
Assumptions. TraceWeaver makes the following assumptions: (i)

A parent span’s response is sent out only after all child spans finish

processing. (ii) Every successful request has a response or a comple-

tion acknowledgement. In otherwords, we assume request-response

behaviour, commonly enforced by REST and gRPC endpoints. (iii)

It is possible to knowwhich unique call graph a given (completed)

request falls into (e.g., via API endpoint, unique header parameters).

(iv) Once identified, call graphs are either static with a well-defined

structure or can display dynamism by traversing only a subset of

the graph (e.g., due to caching, failures, or semantic reasons). We

handle this class of dynamism in §4.2. We leave tackling other forms

of dynamism, e.g., due to retries and quorums, to future work (§7).

For ease of exposition, we first describe our algorithm for the

scenario where all spans follow the same call graph, i.e., no dynamic

behaviour is induced due to caching or errors (§4.1), and then fold

dynamism into it (§4.2).

4.1 Reconstruction for Static Call Graphs
We refer to Figure 1 to describe our algorithm and Table 4.1 lists

all tunable parameters. For a given application, TraceWeaver de-

composes the problem of reconstructing an entire request trace into

solving independent optimization tasks at individual services i.e., in



ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Sachin Ashok, et al.

Parameters value
Max. size of an optimization batch B = 30

Max. candidates for any given span K = 5

Max. GMM components for modeling delay distribution C = 5

Number of buckets used to estimate delay mean and variance R = 10

Table 1: Parameters used in TraceWeaver’s design.

Figure 1, mapping 𝑅1-𝑅8 to 𝑅2-𝑅5 at A is an independent optimiza-

tion task w.r.t mapping 𝑅2-𝑅5 to 𝑅3-𝑅4 at B. Also, given that 𝑅1 and

𝑅2 must be received and sent by the same container of a service, the

scope of each optimization task is limited to that granularity. Finally,

the independentlymapped pieces of the request trace can be trivially

assembled in post-processing to form the full trace (since the outgo-

ing 𝑅2 at A and the incoming 𝑅2 at B are the same and can be linked).

In essence, at each service 𝑆 , TraceWeaver receives a dynamic

number of spans (𝑀) per time window and uses the spans and call

graphs to do the following:

(1) Candidate identification: For each incoming span (a span whose

request arrives at 𝑆 , is serviced by 𝑆 , and its response departs 𝑆)

among the𝑀 spans, find candidatemappings using span timings and

constraints derived from the call graph and the dependency order.

(2) Batching: Split the𝑀 spans into batches to restrict the scope of

joint optimization to individual batches. Careful splitting minimizes

the overlap of candidate mappings across spans in adjacent batches.

(3) Distribution generation: Estimate the “inter-span” time distri-

butions as per the dependency order between the services in the

call graph at 𝑆 . In other words, if a dependency exists between 𝑅1

and 𝑅2 (or similarly, between 𝑅5 and 𝑅6), we estimate a probability

distribution for the time between those events. In general, these

probability distributions correspond to the time duration between

the reception of an incoming parent request (child response) at 𝑆

from a caller (callee) and the transmission of a dependent outgoing

child request (parent response) at 𝑆 to a callee (caller).

(4) Candidate ranking: Within each batch, score and rank candidate

mappings for each span based on howwell the timings of the candi-

date spans align, calculated using probability distributions from (3).

(5) Joint optimization: Solve each batch jointly, i.e., find an assign-
ment of incoming spans to one candidatemapping each (by choosing

among available candidate mappings), in such a way that the cumu-

lative probability score of the batch of spans is maximized.

(6) Iteration: Repeat steps 3, 4 and 5 by feeding in the mappings

from step 5 to step 3 to improve time distributions (step 3), candidate

rankings (step 4), and the final assignment (step 5).

Step 1: Identifying Candidate Mappings. For each incoming

span at a given service 𝑆 , we define a candidate mapping as the set

of candidate child spans, one for each backend service invoked by

𝑆 as per the call graph, that is jointly feasible as explained below.We

use timing constraints derived from the call graph and dependency

order at that service to identify the set of jointly feasible candidate

mappings for each incoming span.We refer back to Figure 1 to ex-

emplify such constraints. Given that service A depends on B, we

can constrain the set of child spans to B for the incoming parent

span 𝑅1-𝑅8 at A to the ones that satisfy the following criteria: (i) the

child span’s request 𝑅2 was sent to B after 𝑅1 arrived at A, and (ii)

the corresponding response 𝑅3 from B for that child span’s request

arrived at A before the parent span’s response 𝑅8 left A. Likewise,

we can constrain the set of feasible child spans to C. The dependency

order (i.e. A invokes B andC sequentially) allows us to add additional

constraints when considering 𝑅1’s candidate mappings for child

spans at B and C – (iii) response (𝑅5) of a candidate child span must

arrive from B at A before the request (𝑅6) of a candidate child span is

sent fromA to C. A set of candidate spans (i.e., a candidate mapping)

satisfying all these constraints is deemed feasible.

Step 2: Creating Optimization Batches. To start, we split the𝑀
spans into non-overlapping batches for joint optimization. As step 4

will describe, TraceWeaver employs a solver to do the joint optimiza-

tion. The intent of batching is to make using the solver feasible by

limiting the size of the graph (proportional to batch size) passed to it.

Our batching strategy employs the following algorithm to eliminate

shared candidates across batches. At a high level, we try to make a

cut (i.e., create batch boundaries) in such a way that no child spans

satisfy constraints for parent spans in multiple batches; but we also

limit the maximum size (𝐵) if an appropriate batch boundary is not

identified within that threshold.

(i)We sort all𝑀 incoming spans at the given service by start time,

with ties broken by end time.

(ii)We consider every adjacent pair of spans (𝑖 , 𝑖+1) for a possible

cut, where a cut denotes a batch ending with span 𝑖 and the next

batch starting with span 𝑖+1.

(iii)Wemake a cut if (a) the current batch size is larger than a thresh-

old (𝐵=100) or if (b) (1) there are zero common candidates between

span 𝑖+1 and the preceding span 𝑗 with the latest end time (i.e., the

span which finished last among all preceding spans 0 through 𝑖) and

(2) the span 𝑗 ends before span 𝑖+1.

This algorithm’s runtime is𝑂 (𝑀). In Appendix A.2, we prove that
the latter condition (b) ensures that span 𝑖+1 or any later span will

not have any candidates in common with the previous batch.

Step 3: Constructing delay distributions. We construct delay

distributions for caller/callee combinations per the call graph and the

dependency order observed at 𝑆 . For example, consider the scenario

where service A (𝑆 = A in this case) initiates a call to service B and,

upon receiving a response from B, subsequently calls service C as

illustrated in Figure 1. In this context, we construct two distributions

to encapsulate this scenario and the exhibited sequential depen-

dence. These two distributions represent the time elapsed between

(i) the arrival of a request at A and the subsequent transmission of

the corresponding outgoing request to B and (ii) the reception of

a response from B and the subsequent transmission of the corre-

sponding outgoing request to C, respectively. Note, estimating such

distributions is non-trivial since we naturally do not have the actual

mappings between spans arriving at A and spans going from A to

B, which could have given us the actual values of the processing

delays. This is a chicken-and-egg problem: if the mappings were

available, the distributions could be constructed trivially, but the

distributions are needed to produce the inferred span mappings (the

TraceWeaver output). Note that the real-time gaps between the in-

coming and the associated outgoing spans are not possible to obtain

in a systemwithout tracing (as this is the very problem TraceWeaver

is attempting to solve). We resolve this by using a seed distribution

followed by successive iterations, jointly discovering a distribution
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and mapping that agree well with each other (as illustrated in Fig-

ure 9 in Appendix A.3). Such iterative techniques are commonly

used in other domains for unsupervised optimization [32].

In the 1st iteration, we fit a Gaussian distribution for this delay 𝑡 :

N(𝜇𝐴𝐵, 𝜎𝐴𝐵). Note that 𝜇𝐴𝐵 can be estimated exactlywithout know-

ing the precisemapping. Since themean of the differences equals the

difference of themeans,we can take the difference between themean

of arrival times of𝑀 external requests atAand themeanof departure

times of𝑀 requests from A to B. To estimate 𝜎𝐴𝐵 , we split𝑀 spans

into𝑅=10 buckets and compute the empiricalmean for each.We can

calculate the approximate sample standard deviation (𝜎𝐴𝐵 ) across

these bucketmeans (our samples). To obtain𝜎𝐴𝐵 (standard deviation

of our population of𝑀 spans) we need to multiply that with

√
𝑅 (as

𝜎𝐴𝐵 =

√
𝑛 * 𝜎𝐴𝐵 per central limit theorem [59], where𝑛 is no. of sam-

ples or bucket means). Note that this estimate is only approximate

since𝜎𝐴𝐵 is computedoverbucketmeans rather than individual data-

points fromthepopulation (whichwedonothave).Nevertheless, this

is sufficient to create initial “seed” distributions for the first iteration.

In subsequent iterations, the final output of the previous iteration

(i.e., mapped spans) is available which gives us (our best estimate of)

individual data-points. We use a muchmore robust GaussianMix-

ture Model (GMM) [50] to fit these data-points using an expectation

maximization (EM) algorithm [49]. A GMM is a powerful type of

mixture model GMM(𝐶), comprised of several Gaussians, each iden-

tified by 𝑐 ∈ {1,..,𝐶}, and parameterized by 𝜇𝑐,𝐴𝐵 , 𝜎𝑐,𝐴𝐵 , and mixing

weight 𝜋𝑐,𝐴𝐵 . GMMs are known to be a universal approximator of

densities [30, p. 65], given a finite number of Gaussian components

𝐶 with enough parameters. To identify𝐶 , we run a sweep from𝐶

= 1 to 20 components and use the GMM (𝐶) which minimizes the

value from Bayesian Information Criterion (BIC) [58], a standard

model selection tool used to mitigate over-fitting. Over successive

iterations, the inferred mappings from previous iterations improve

the delay distributions resulting in better futuremappings. However,

successive iterations that leverage a more complicated Gaussian

Mixture Model only boost accuracy for scenarios where a simple

Gaussian is insufficient to model the underlying delay distributions.

Step 4: Ranking candidatemappings.We use the delay distribu-

tion inferred in Step 3 to score each candidatemapping. Let𝑍 denote

a candidate mapping. In Figure 1, for service A, let incoming span

𝑅1-𝑅8 be mapped to outgoing spans 𝑅2-𝑅5 and 𝑅6-𝑅7 according to

𝑍 . We define the score of mapping𝑍 as

𝑠𝑐𝑜𝑟𝑒 (𝑍 )=𝑠𝑐𝑜𝑟𝑒𝐴𝐵 (𝑡1, 𝑡2)+𝑠𝑐𝑜𝑟𝑒𝐵𝐶 (𝑡5, 𝑡6)+𝑠𝑐𝑜𝑟𝑒𝐶𝐴 (𝑡7, 𝑡8)
where 𝑡1 is the time at which 𝑅1 arrived at A, 𝑡2 is the time at which

𝑅2 was sent, 𝑡5 is the time at which 𝑅5 was received, 𝑡6 is the time at

which𝑅6 wassent,𝑡7 is the timeatwhich𝑅7 wasreceived, and𝑡8 is the

time at which 𝑅8 was sent. Note that all the candidate mappings ob-

tained from step 1 are feasible, hence 𝑡1 <=𝑡2 <=𝑡5 <=𝑡6 <=𝑡7 <=𝑡8
(or else𝑍 would be infeasible). We set,

𝑠𝑐𝑜𝑟𝑒𝐴𝐵 (𝑡1, 𝑡2)= logP(𝑡 =𝑡2−𝑡1 |Θ)= log

(
𝐶∑︁
𝑖=1

𝜋𝑖 P(𝑡 |𝜇𝑖 ,𝜎𝑖 )
)

where P(𝑡 = 𝑡2 − 𝑡1 |Θ) is the probability density function of the

GMM described by Θ. Note, iteration 1 is just a special case of

GMMwith just 1 component such that 𝑆𝑐𝑜𝑟𝑒𝐴𝐵 (𝑡1, 𝑡2) = logP[𝑡 =
𝑡2−𝑡1 |N (𝜇𝐴𝐵, 𝜎𝐴𝐵)]. All possible candidate mappings are ranked

using this scoring criteria.

Step 5: Joint optimization.Given the batch of spans where each
incoming span has a set of candidate mappings, we cast the prob-

lem of finding the “best” mapping for each span as an optimization

problem. The optimization attempts to find a set of mappings for the

batch (one mapping per span) that maximizes the cumulative score

of that set subject to two constraints: (1) an incoming span should

only be assigned one mapping, (2) the same outgoing span must not

be present in two different mappings. This construction turns out to

be an instance of the multidimensional assignment problemwhich

is NP-hard [41]. We propose an online algorithm ( as illustrated in

Figure 10 in appendix) which approximates the global maxima by

finding the maximum independent set (MIS) and works as follows:

(i)We find the top𝐾 =5 candidate mappings for each span.

(ii) Next, we transform each span’s top 𝐾 candidate mappings as

vertices in a graph with weights proportional to their score.

(iii) Then, we add edges between vertices if they break constraints.
That is,weaddanedgebetweencandidatemappingsof the samespan

(to address constraint 1) and an edge between two candidate map-

pings that share a common outgoing span (to address constraint 2).

(iv)As each batch is fairly small, we can solve MIS exactly or nearly

optimally using Gurobi [3], an off-the-shelf MIS solver.

(v)Once the mappings have been chosen for a batch, the outgoing

spans of those mappings are deleted so that they cannot be assigned

again to other incoming spans in subsequent batches. This only

occurs if there are common candidates across batches, which we

minimize via our choice of batch boundaries in Step 2.

4.2 Incorporating Dynamism
In section §4.1, we assumed the call graphs to be static. We now de-

scribe howTraceWeaver handles the predominant class of call-graph

deviations, where requests can follow any valid subset of the usual

call graph. This class of dynamism includes cases where some back-

end calls are notmade due to (1) caching, (2) service failures, or (3) se-

mantic reasons where the backend calls are unnecessary. To address

such cases, we create a fuzzy version of our optimization that allows

for a fraction of incoming spans to not have a complete mapping,

i.e., their mapping does not have an outgoing span for each outgoing

endpoint, thereby only traversing a subset of the call-graph. To iden-

tify and limit what fraction of such incoming spans are allowed this

opportunity (to control fuzziness), we look at the externally observ-

able discrepancy between what we expect given the call graph and

what we observe in reality (e.g., instead of 1000 outgoing spans, we

observe only 900).Wefill up suchdiscrepancies usingphantom“skip”

spans, such that the optimization can use them to fill in the gaps (e.g.,

spanW→ spanX→ skip span→ span Z). In addition to limiting the

number of skip spans, it is crucial to allow an incoming span opportu-

nity to use it only according to its likelihood of having encountered

dynamism. To realize both, we run the following algorithm:

(1) First, we calculate the total discrepancy between incoming re-

quests and outgoing requests for each backend service over a large

window (e.g., 10 secs) so that the observed discrepancy is not inci-

dental due to thewindow being too small to see outgoing spans. This

value is set as the total budget and skip spans are created accordingly.

(2)Next, each optimization batch is analyzed to estimate the max.

degree of dynamism it could have encountered. This value directly

corresponds to howmany skip spans it may need at most. This value
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has max quota𝑄 =𝑋−𝑌 , where𝑋 is the total number of outgoing

spans needed for this batch, and𝑌 is the number of spans that can

only be assigned to this batch given the constraints.

(3) Given the total budget and max. quota for each batch, we dis-

tribute skip spans to each batch using a water-filling algorithm [60].

This step iteratively distributes the spans to the most needy batches

(i.e., with the highest Q values), stopping only when it runs out of

total budget. This step also ensures thatwhatever error in estimation

we make in calculating the total budget is distributed across batches.

(4) Finally, we run the same joint optimization described earlier

with each batch having access to a certain number of skip spans

as allocated previously. Also, we must adjust howwe estimate the

initial seed delay distributions if there are skip spans as the exact

mean cannot be calculated as in §4.1 step 3. Hence, to initialize our

optimization, we use delay distributions built onmappings obtained

by running WAP5 [48]’s approach (described in §6)). Note this is

only for the 1st iteration and for successive iterations, GMMs are

leveraged to produce fully mapped traces in the usual manner.

5 SYSTEMDESIGNAND IMPLEMENTATION
Our prototype for TraceWeaver is implemented as a process which

continuously ingests span info. and outputs the mapped spans (i.e.,

full traces). The key inputs required by TraceWeaver include span-

level info. and the call graph with the dependency order. We discuss

howweobtain these inputs in our systemaswell as alternate options.

5.1 Obtaining live span information
5.1.1 Capturing raw data.
(1) eBPFhooks (our approach). For a running service,we can employ

eBPF hooks to obtain info. for requests/ responses of each parent

and child span arriving at/ departing from that service. For instance,

we implement the following eBPF-based approach for HotelReserva-

tion [28], a gRPC-based app used in our evaluation. Using eBPF, we

hook onto networking syscalls (e.g., accept, send, recv, close) for rele-

vant processes (filtering on PID),which enables us to capture info. on

the wire without directly interfacing with or instrumenting the app.

(2) Alternatives: (a) In deployments running service meshes, span

data is already available with sidecar proxies, which route requests/

responses via itself using iptable rules. These proxies intercept

the HTTP connections and have visibility into the request and re-

sponse headers, allowing them to gather span information (e.g.,

request/response mappings, timings). (b) Tools likeWireshark [61]

and tcpdump [55] are also sufficient to capture raw network traffic.

5.1.2. Parsing andmapping requests/ responses. Sidecar proxies
and tools likeWireshark already contain suitable protocol analyzers

or adapters, which allow for parsing serialized raw byte stream data.

For example, raw data can be decoded to construct gRPC requests

and map them to their corresponding responses by understanding

the structureddata encapsulatedwithin the rawstream.For the eBPF-

based approach,we can run a similar adapter as a separate user-space

process, which ingests raw data from the kernel eBPF component to

parse and produce the same output. For gRPC, one of the app layer

protocols we tested on, we now describe an interesting challenge.

Capturing requests/ responses from gRPC, which is built on top of

HTTP/2 [6] (the next generation of HTTP protocol), can be tricky.

This is due to the stateful header compression scheme (HPACK [5]),

which makes request/ response headers hard to parse. The HPACK-

basedcompression feature involves the client andservermaintaining

a dictionary, mapping previously seen headers to unique numeric

codes, and only passing these codes in further communication.With-

out access to this dictionary, we need to resort to sniffing from the

beginning of a long-running HTTP connection in order to not miss

important connection information available only at the initial phase.

Also, the gRPC adapter must use a “man-in-the-middle” style ap-

proach to keep track of the dictionaries being actively updated at

the client/ server. Our adapter uses standard HTTP libraries [7] to

continuously ingest and parse this data, which allows us to read the

plaintext HTTP header and payload. We currently do not handle

encrypted traffic, but existing software solutions like Pixie [9], built

on eBPF, have built-in mechanisms to trace the API between the ap-

plication and the SSL/TLS library to capture it before it is encrypted.

5.2 Obtaining call graph and dependency order
5.2.1 Generating test spans.

(1) Test environments (our approach): To learn the call graph asso-

ciated with a service, we can replay production traces (identified

by query parameters or API endpoints) in a test environment. We

do this one trace at a time so that the ensuing spans can be easily

weaved together to form “test traces” due to the lack of competing

candidates.We additionally apply a large artificial delay using Linux

TC rules on each observed outgoing span to create varied examples.

This last step ensures there is enough variety in these test traces to

prevent ambiguity in learning dependencies. For example, in Fig-

ure 1, it can be tricky to determine whether A calls B and C serially

or just appears so due to the quick completion of B’s invocation. If

delaying B’s invocation also delays C’s invocation, it would indicate

serial ordering. Note that production traces could be clustered and a

subset of representative requests fromeach cluster could be executed

in isolation to reduce execution time. We leave this to future work.

(2) Alternatives: (a) If test environments are not feasible, test traces

can also be generated from production environments by spinning up

a tiny replica for the service of interest and re-directing one request

at a time to it. Thiswould alsoprovideuswith test spanswhich canbe

mapped together trivially. (b)A largevolumeofproduction tracescan

also be analyzed to find test traces, given that there might be periods

of low load where the mappings are obvious and constructing traces

is trivial. We leave the exploration of these options to future work.

5.2.2 Inferring call graphs and dependency order.We use test

traces to learn the call graphanddependencyorderusing theanalysis

below. For each set of test traceswhichcover the samepath,wemodel

all the services it traverses asvertices in agraph.Theaim is toobtaina

graphwithdirectededgeswhichwould indicatedependencies.Atser-

vice A in Figure 1, A and B are endpoints for incoming and outgoing

spans. Here, A→Bwould indicate that an incoming span’s request

at Amust precede an outgoing span’s request to B. Similarly, since B

and C are both outgoing endpoints, B→Cwould indicate that B’s in-

vocationmust conclude (i.e., its responsemust come back) before C’s

invocation. For this graph, we initially add directed edges between

every vertex pair (as every dependency is possible). By analyzing the

traces from the test dataset, we remove the corresponding edge from

the graph for every violating example of a dependency. Example,

if a trace indicates that B finishes execution before or during C, we
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remove C→B. By iterating through all test traces, we obtain a graph

with edges representing genuine dependencies, which we can use as

constraints. Similar approaches are espoused by [21, 40] to construct

causal models for request execution which can also be leveraged.

5.3 Deploymentmodes
TraceWeaver allows for the following deployment modes.

(1) Offline: In this mode, span info. is collected from apps at runtime,

andstored for lateranalysis.Whenanoperator requires trace-level in-

sights for a specific time period, TraceWeaver can selectively run the

algorithm on spans from that period to produce the required traces.

(2) Online (enables tail-based sampling): In this mode, span info. is

collected at runtime and sent to a live, runningTraceWeaver instance

which reconstructs traces in real-time. This online deploymentmode

of TraceWeaver also enables trace sampling. Sampling is an impor-

tant use case for distributed tracing, where to reduce overhead, only

a certain percentage of API calls are traced, but each is traced across

its whole call tree using trace IDs. In this deployment mode, all
requests and responses are collected temporarily by TraceWeaver

for mapping. Next, TraceWeaver maps all the requests using the

optimization algorithm and produces the fully mapped traces. Now,

sampling can be done by the appropriate logging agent (either Trace-

Weaver itself or by interfacing with the app) at any given operator

sampling rate and the rest of the traces can be deleted. This approach

requires temporary storage of all spans for each sliding window of

time (e.g., 1-5 seconds) where the window needs to chosen based off

the known response latency distribution of the app (e.g., such that all

plausible candidate mappings are captured within it). We evaluate

the runtime performance of this online deployment setting in §6.

6 EVALUATION
6.1 Setup
We evaluate on benchmark apps from the DeathStarBench[28] suite

– HotelReservation andMedia Microservices (Fig. 7 & 8 in Appen-

dix A.1), a Node.js based microservice demo[11], and on production

traces from theAlibaba cluster dataset[12]. HotelReservation,Media

Microservice, and Node.js apps comprise 6, 14, 7 different services

respectively excluding a variable count of caching and database com-

ponents (Memcached, Redis, and MongoDB). The microservices are

orchestrated usingDocker [24] andKubernetes [38] and are run on 3

VMs running Ubuntu 16.04 (each provisioned with 4 cores and 4 GB

of RAM). All VMs run within a bare-metal 32-core Intel Xeon Silver

server. We use the wrk2 [57] load generator to create requests that

hit each app’s frontend (to generate test as well as live spans). We

employ Jaeger [35] to collect ground truth of the end-to-end traces.

Baselines.We compare TraceWeaver against the following:

(i) WAP5 [48]: It tackles a weaker problem of dependency mapping

by using the span-level information to compute the probability with

which services invoke each other. For each child request 𝑟 , WAP5

assigns it to the most recent parent request that is not yet assigned

(or leaves it unassigned if there’s no parent within a specific time

window).Dependingon the service the child requestwas transmitted

to and the service the parent request was received from, appropriate

frequency counters are updated, and the probability distributions

are generated. Then, all such probability trees at each service are

aggregated to obtain the overall pattern, determining the probability

that a service𝐴 calls another service 𝐵 to process its requests. We

re-purpose the tree-building algorithm ofWAP5 for request tracing,

picking themost likely child span requests as themapping for thepar-

ent span’s request 𝑟 . While this version ofWAP5 also employs map-

ping spans using probability scores, TraceWeaver differs from it con-

siderably owing to techniquesmentioned in §4: constraint-checking,

near-perfect batching, GMM-based ranking, and joint optimization.

(ii) vPath [54]/ DeepFlow [51]: As previously mentioned, vPath as-

sumes a specific threading model where threads pick up requests

and process them to completion before switching to the next request.

It assumes no request handoffs between threads, no async calls, and

assumes access to the thread ID for the thread processing a request.

While this caneffectively stitchspansat serviceswhere theseassump-

tions hold, it fails at services where it does not. DeepFlow employs

identical assumptions so they’re represented by our implementation

of vPath in the results. For the tested appswhich do request handoffs

between threads internally, we do not have access to the ID of the

final processing thread (we only have the gRPC thread ID that picked

up the request) so DeepFlow/vPath is in-applicable. Similarly, no

thread IDs are available in the Alibaba production dataset (possibly

due to the nature of the apps as well as due to the overhead of captur-

ing thread IDs). So in such cases, lacking thread IDs, vPath/DeepFlow

is made to assume that all requests are handled by the same thread.

(iii) FCFS: We also construct a strawman where external requests ar-

riving at a service A are assigned to the outgoing requests at service

B based on their arrival and departure orders which works well if

requests are processed in order with limited or no parallelism.

6.2 Benchmark applications
6.2.1 Accuracy vs. load. We begin by testing TraceWeaver’s accu-

racy as we increase the load (in terms of requests per second), calcu-

lated based on each app’s bottleneck. Increasing the load increases

the level of concurrency among requests that are simultaneously

processed by the app. Figure 4a shows the accuracy of end-to-end

tracing for varying load for TraceWeaver, and the baselines, WAP5,

vPath (DeepFlow) and FCFS across the benchmark apps. As load

increases, high levels of parallelismkick in, reordering requestsmore

frequently, so FCFS cannot keep up. Multiple apps we test on break

vPath’s assumptions as they employ RPC frameworks like Thrift [1]

and gRPC [2]. The thread-based approach manages to get 80% accu-

racy at low loads, but accuracy quickly degradeswith increasing load

as the internal multiplexing of requests across threads is not visible

to it. WAP5, whose statistical algorithmwas designed for a different

usecase anddoesnot consider overlappingparallel requests carefully,

experiences similar degradation in accuracy. Due to a combination

of techniques such as constraint-checking, batching, ranking, and

joint optimization, TraceWeaver is able to achieve high accuracy.

Top𝐾 accuracy:We also analyze the accuracy of one of top𝐾 map-

pings being correct and we find that accuracy to be highly boosted.

A Top𝐾 (for low𝐾 , we use𝐾 = 5) output can still be very useful to

an operator as they need only enumerate within a ranked list of 5

candidate mappings at each service for a problematic span which

would enable fine-grained debugging with enhanced accuracy.

6.2.2 Accuracy vs response times. Developers are often interested
in analyzing end-to-end traces which suffer tail latency. Figure 4b
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Figure4: (a)Accuracyacross increasingsystemloadonallbenchmarks. (b)Accuracyacrossrequestsbinnedbyresponse timesonall
benchmarks. (c) Accuracy across increasing caching rates at one endpoint within the Hotel Reservation application. (d) Accuracy
across increasing interleaving (1 is lowand6 is high) of async I/O readswithin a single threadwhich cause inaccuracy inDeepFlow.

illustrates the accuracy for requests binned by their response time

percentiles at single load level = 125 RPS (response times ranged

from 40 ms to 225 ms for our applications). We can see that for

the tail 10%ile requests, the accuracy of other baselines suffers, but

TraceWeaver recovers the end-to-end traces with good accuracy.

6.2.3 Accuracy under increasing dynamism (caching). Behaviors
such as caching and errors result in call graphs which differs from

the static call graph we expect by traversing only a subset of the

graph.Wehandle this deviation asmentioned in §4.2. To evaluate,we

artificially insert caching into the search service ofHotelReservation

app, varying the cache hit probability from 5% to 80%. As we allow

the optimization to apply call graph constraints in a fuzzy manner,

TraceWeaver is able to get good accuracy in this dynamic scenario

as illustrated in Figure 4c. Other approaches like FCFS andWAP5

fail to gracefully decline in accuracy due to caching causing high

misalignment between the order of incoming and outgoing spans.

6.2.4 Accuracy in asynchronous settings. As mentioned previously,

requests being handed off between threads within an app internally

can break vPath/Deepflow’s threading assumption (apps running

gRPC/ Thrift already test this in Figure 4a). Yet another case is when

async I/O causes multiple requests to be handled simultaneously by

the same thread. Such async I/O can cause the last incoming request

to not be responsible for the next outgoing request (as shown in Fig-

ure 2(b)). Figure 4d shows an experiment where we introduce such

interleaving by creating async I/O requests for disk reads.We control

interleaving by setting the standard deviation of the file size distri-

bution. vPath/DeepFlowwhich depend on a synchronous model fail

in such settings while TraceWeaver continues to performwell.

6.2.5 TraceWeaver ablation study. To understand the contribution
of each component of TraceWeaver to the overall accuracy, we con-

duct an ablation study (by removing components of TraceWeaver

incrementally) on the traces from the HotelReservation andMedia

Microservice apps. Figure 5 illustrates this experiment, showing a

degradation in accuracy as expectedwhenwe incrementally remove

the following optimizations: a. using invocation order to apply con-

straints (line3), b. iterating to improvedelaydistributions (line4), and

c. batching to apply joint optimization across spans (line 5). Please

note that not all optimizations benefit all apps equally. For instance,

serviceswithdelaydistributions thata simpleGaussiancanrepresent
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Figure 5: Component-level accuracy gains in TraceWeaver.

well will gain little from multiple iterations improving the GMM-

based model, while others may see a substantial boost in accuracy

(78% to 85% in one case). Similarly, a service where all backend invo-

cations are done in parallel will not benefit from using constraints

from the invocation order, as there aren’t any serial dependencies.

6.3 Production traces
6.3.1 Accuracy vs. load multiple. Next, we evaluate on the Alibaba
cluster dataset [12] similarly to the benchmark apps (accuracy vs.

load). Our analysis considers a dataset spanning the traces corre-

sponding to 15 most popular call graphs. The ground truth traces

contain parent-child relationships between spans and start times and

durations of individual spans. However, given the sanitized nature

of a production dataset, call graph identifiers (i.e., API endpoint, port,

header parameters) are notably missing. Therefore, for our analysis,

we slice the trace data into buckets, one per call graph and evaluate

TraceWeaver on each bucket. Another issue is that the production

data is sampled at a rate of 0.5%, making the tracing challenge ex-

tremely easy (due to large spacings between adjacent spans in the

sampled set). This is a common problemwith any production dataset

since operators must employ sampling to restrict the volume of logs.

Therefore, to enable testing on production data, we employ the fol-

lowing strategy to compress the dataset to effectively increase the

load while still evaluating on real (unchanged) service time distribu-

tions. To do this, we compress the time intervals between incoming

spans in this trace dataset while, crucially, preserving the essential

incoming→ outgoing delay characteristics of the service. To clarify,

suppose two incoming spans,𝑆1 and𝑆2 (belonging to trace𝑇1 and𝑇2)
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Figure 6: (a) Accuracy across increasing loadmultiple on Alibaba’s dataset (boxplots presents accuracy %iles for 15 call graphs).
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with arrival times 𝑡1 and 𝑡2, durations𝑑1 and𝑑2 aremapped to outgo-

ing spans𝑅1 and𝑅2 respectively. To compress, we adjust the spacing

(𝑡2 - 𝑡1) to be much smaller using a compression factor 𝑐 𝑓 while leav-

ing 𝑑1 and 𝑑2 unchanged such that time gap for 𝑆1→𝑅1 and 𝑆2→𝑅2

remains the same. We also adjust the spacing between the outgoing

spans by the same compression factor𝑐 𝑓 to ensure correctness. Effec-

tively, a higher compression factor leads to higher concurrency and

overlap in the traces creatingmanymore plausible candidates which

make non-intrusive request tracing harder which we can use to eval-

uate TraceWeaver.We refer to this compression factor as “loadmulti-

ple” to signify the load increase. Please note, the trace data only indi-

cates the service names for the caller and the callees but not the exact

container ID. Therefore, we also normalize the load multiple by the

number of replicas of a given service (i.e., for service𝑆 , effective_load

= load_multiple / num_replicas) to recreate the load incident on a

single container of that service (assuming load is balanced equally).

The aim is to recreate realistic load but we increase the load multiple

value further (i.e., to 15000) to evaluate the TraceWeaver’s breaking

point. Figure 6a shows our results on this dataset. As the load multi-

ple increases, the accuracy drops for all algorithms, but TraceWeaver

is still able to get high accuracy that is still practically usable.

6.3.2 Confidence scores (per-service). For each service 𝑆 , we com-

pute a confidence score, equal to 100%minus the%of incoming spans

at 𝑆 that either remained unmapped or weren’t assigned their top

choice mapping of outgoing spans. We find this confidence score

to be well correlated with the accuracy with a very high Pearson

correlation coefficient [46] of 0.89 (Figure 6b). Such a score can be

used by operators to select an informed set of services to instrument

if partial instrumentation of the application is possible (since instru-

menting a small set of the𝑋 most difficult services among a total of

𝑌 services is much easier than instrumenting all of them).

6.4 Using approximate tracing for debugging
We showcase two use cases of how operators can use (imperfect)

end-to-end traces derived from TraceWeaver for operational tasks.

6.4.1 Troubleshooting delays for slow requests. We emulate a per-

formance anomaly scenario in the HotelReservation app (Fig. 7 in

the appendix) by inflating the request-response span latency at the

Reserve and Profile services by 40ms for 10% of randomly selected

requests. The operator’s use-case is to localize which service(s) are
causing tail latency for the slowest 2% of requests (the chosen subset)?

Answering this query requires complete traces for requests hit-

ting the frontend, which have an e2e response latency > 98%ile and

then computing the time spent at each service individually. Figure 6c

presents our results. Note, for this app, spans can incur high delays at

any set of services. So, in the absence of request traces, if an operator

filters spans at each service by tail latency (top 2%), all services show

up as contributing high latency (leading their debugging astray).

This is because there are different subsets of requests which suffer

high latency at each service. However, this view does not filter only

requests that suffer the most cumulatively (and are hence in the top

2% overall). With full traces produced by TraceWeaver, an operator

can nowfilter on traces (instead of spans) in the top 2% bracket. Note,

these traces are in the top 2% because they suffer anomalous delays

(which we injected) at two services simultaneously increasing their

cumulative delay. Our results show us closely matching the ground

truth in revealing Reserve and Profile as the culprits. Note that this
aggregate query output, which is of interest to the operator, is not

affected by a few inaccurate traces showcasing TraceWeaver’s value.

6.4.2 A/B testing of a recommendation engine. In this scenario, oper-
ators want to run A/B tests for a new version (=B) of a recommenda-

tion algorithm and want to measure the effect of the new algorithm

on user engagement. Usually, the service is modified so that a small

percentage (=x)of requestsare redirected to thenewerversion (=B) in-

stead of the older version (=A). Thereafter, the two versions are com-

pared using two-sample t-tests [31] to analyze if the difference be-

tween the user-satisfaction scores of the two groups (users served by

A vs. B) is statistically significant or not. The test produces a p-value

which is the probability of obtaining results at least as extreme as the

observed results. If 𝑝 <0.05 (most commonly chosen threshold [45]),

operators can conclude that the difference seen is statistically sig-

nificant and that version B results in better user satisfaction than A.

Without request traces, the operator cannot determinewhich user

request was redirected to A or B. Note, it is not enough to analyze

spans at A and B because user-satisfaction is not calculable at span-

level and is only reflected end-to-end. Hence, the only way to com-

pare user-satisfaction is to consider the aggregate user-satisfaction
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score across all requests. If there is an increase in the overall user-

satisfaction, one can conclude that the increase is due to the𝑥%of the

requests which were redirected to B. However, since B is untested, it

is common to have a small 𝑥 , say 1%, to minimize risk. If only a small

number of requests are redirected to B, then the aggregate user sat-

isfaction does not change much and conclusive evidence of improve-

ment due to B cannot be obtained. The blue line in Figure 6d shows

p-value remaining high for small 𝑥 , indicating that there was incon-

clusive evidence forBbeingbetter.As𝑥 increases, the aggregate user-

satisfaction score will pronouncedly reflect the changes due to B.

With request traces, operators can separate the requests going toA
and B, albeit with some error. The green line in Figure 6d shows that

evenwhen requests to A and B are separatedwith only 90% accuracy,

theA/B test taskof determining ifB improvesuser satisfaction (as𝑝 <

0.05) can be completed.More importantly, it can be donewith far less

traffic redirected to B compared to the case w/o tracing (2% vs 20%).

6.5 Performance overhead
Presently, a single instance of TraceWeaver takes a few seconds (<5)

to map 1000 spans on average (across our benchmarks) which is

roughly ∼200 RPS per container. However, we can further improve

runtime by instantiating new instances of TraceWeaver which can

handle disjoint sets of spans in parallel (e.g., instance𝐴 handles t=0 to

1s, 𝐵 handles t=1 to 2s). The batching scheme mentioned in §4 helps

identify such disjoint sets. However, systems handling production-

scale loadsoftenhandle it by splitting trafficacross replica containers,

limiting per-container load. Hence, even in systems handling high

load, a single online TraceWeaver instance usually only handles

O(1000) RPS at most. Note, regardless of deployment mode (online

v. offline), TraceWeaver runs off the critical path of the application.

6.6 Limitations
A single TraceWeaver instance is only required to reconstruct traces

for spanswithin a single container because requests (of parent spans)

arriving at container A do not result in backend requests (of child

spans) being sent out of a different container B. This ultimately

limits the concurrency that TraceWeaver needs to deal with to the

resources of a single physical node, or more commonly, a single

container within a node hosting multiple containers. However, it is

possible that some appsmay have extremely high parallelismwithin

a single process, thus increasing the candidates TraceWeaver has

to disambiguate among, worsening accuracy. However, most mi-

croservice systems prefer to avoid employing vertical scale-up [10]

to handle high load [19] (further limiting parallelism) due to a variety

of reasons like resource limitations, disruptive container restarts [29],

etc., and instead prefer to horizontally scale-out [4].

TraceWeaver currently cannot handle cases where, for a given

incoming span, the call graph is highly unpredictable (i.e., it is hard to

knowwhich call graph class a span belongs to). These include cases

where the ensuing call graph after the reception of the span’s request

cannot be determined by standardized endpoints or requires custom

application processing on the contents of the request to decidewhich

backend endpoints are invoked via child spans. Note that many

applications operate with predominantly static call graphs with

dynamism exhibited mainly in the forms handled in §4.2. For other

forms of dynamism, a clustering algorithm could better map spans

to call graphs, using the endpoint as only one of many inputs (others

could be span duration, candidate availability, header info., etc.).

TraceWeaver does not support head-based sampling [42], which

makes the samplingdecisionwhen the request associatedwitha span

arrives. To sample correctly, if a parent span is sampled, we want to

keep all child spans associatedwith that parent span. However, to de-

termine that association, TraceWeaver needs to (a) identify and com-

pare the span’s candidates (needing the response timestamp of the

span) and (b) jointly optimize across all parent spans in the same op-

timization batch (requiringmultiple parent spans sharing candidates

with the span we’re sampling to have finished processing). These

properties are hard to satisfy in the case of head-based sampling, but

TraceWeaver can support tail-based sampling as outlined in §5.3.

7 FUTUREWORK
Identifying thread affinity. Deepflow/ vPath makes restrictive

assumptions about threadingmodels, assumingno request hand-offs

between threadswhich are common inmodern apps (e.g., apps using

gRPC/ Thrift). Tracking requests across such hand-offs (via moni-

toring syscalls handling critical section locks) could prove useful for

non-intrusive request tracing. Even when a thread handles many re-

quests concurrently (asynchronously), the ability to track requests to

threads can help prune plausible candidates that TraceWeaver needs

to consider, boosting accuracy. However, such fine-grained “taint-

tracking” is expensive, and we leave its exploration to future work.

Handling variations in the call graph.Handling variations be-
yondtheonesmentioned in§4.2canbenefitappsemployingquorums

or where requests can invoke new, previously unseen endpoints.

TraceWeaver can currently tackle the variations arising from spans

traversing a subset of the call graph. Handling other forms of vari-

ations remains an interesting challenge and potential directions

include looking at error codes in response headers to infer the num-

ber of retries and using eBPF to detect new syscalls.

8 CONCLUSION
Operating and debuggingmodern “cloud-native” applicationswith a

microservice architecture is challenging due to their distributed na-

ture. Our work introduces TraceWeaver, a system for non-intrusive

request tracing that reconstructs request traces without requiring

application-level code modifications. By leveraging span timings,

call graph knowledge, and statistical timing heuristics, TraceWeaver

significantly outperforms baseline approaches in accuracy. This high

accuracy suggests that TraceWeaver can greatly reduce the manual

effort typically required for tracing instrumentation, providing de-

velopers with an efficient and "free" debugging tool for managing

and debugging complex microservice-based applications.
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A APPENDICES
Appendices are supportingmaterial that has not been peer-reviewed.

A.1 Sample application topologies
Figure 7 illustrates theHotel Reservation app consisting of 6 services,

excluding a varying count of MongoDB andMemcached instances.
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Figure 7: The Hotel Reservation application from the
DeathStarBench suite [28].

Figure 8 illustrates the Media Microservices consisting of 14 ser-

vices, excluding a varying count of MongoDB andMemcached in-

stances. The invocation order of the spans is not shown for the sake

of brevity.
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Figure 8: The Media Microservices application from the
DeathStarBench suite [28].

A.2 Proof for the perfect cuts-based batching
algorithm.

We provide a correctness proof for the algorithm that we use to iden-

tify batch boundaries based off “perfect cuts”, where a perfect cut

corresponds to creating a batch boundarywhere a pair of spans on ei-

ther side of the boundary do not share a common candidatemapping.

First, we define some terms to set the stage for proving the result.

(1) Let a span A be represented by a pair of start and end times,

where start ≤ end, which we call its time window𝑇 (𝐴).
(2) Let there be a list of such spans sorted by start time with ties

broken by end time.

(3) Let a candidate for a span 𝑖 consist of a set of child spans that

satisfy constraints (as discussed in §4.1). By definition, the

child spans must have start time ≥ start time of span i and

end time ≤ end time of span i.

(4) Let𝐶𝑢𝑡 (𝑖−1,𝑖) represent a boundary in a list of spans such

that a𝐶𝑢𝑡 (𝑖−1,𝑖) creates a past set of spans with indices in

the range [0,𝑖) and a future set of spans with indices in range
[𝑖,𝐾), where 𝐾 is the size of the list. A 𝑃𝑒𝑟 𝑓 𝑒𝑐𝑡 𝐶𝑢𝑡 (𝑖 −1,𝑖)
hence implies that the past and future set of spans do not

share any common candidate mappings.

(5) Let 𝑃𝑎𝑖𝑟 (𝑋,𝑌 ) represent a pair of spans with index 𝑋 and

𝑌 respectively and𝑇 (𝑋,𝑌 ) represent the intersection of the
𝑇 (𝑋 ) and𝑇 (𝑌 ).

(6) Let index 𝑗𝑖 represent a span with the latest end time among

all spans with index < 𝑖 .

For𝐶𝑢𝑡 (𝑖−1,𝑖), consider the following two statements–

(1) S1:𝑃𝑎𝑖𝑟 ( 𝑗𝑖 ,𝑖) do not share a candidate and span 𝑗𝑖 ends before
span 𝑖 .

(2) S2: There exists a 𝑃𝑎𝑖𝑟 (𝑥,𝑦) sharing a candidate, where x

and y are indices of spans before and after the 𝑐𝑢𝑡 (𝑖 − 1,𝑖)
respectively so that 𝑥 ≤ 𝑖−1 and𝑦 ≥ 𝑖 .

Theorem A.1. S1 → notS2. That is, if for a certain 𝑖 , span 𝑖 and
span 𝑗𝑖 do not share a candidate and span 𝑗𝑖 ends before span 𝑖 , then
any span after 𝑖 , including 𝑖 , does not share a candidate with any span
before 𝑖 .

Proof. Proof by Contradiction:

If𝑃𝑎𝑖𝑟 (𝑥,𝑦) share a candidate, the candidatemust exist in a𝑇 (𝑥,𝑦)
which is not a subset of𝑇 ( 𝑗𝑖 ,𝑖) (as otherwise 𝑃𝑎𝑖𝑟 ( 𝑗𝑖 ,𝑖) would then
trivially also share the same candidate).

However, this cannot be true for the following reasons:

(1) The earliest𝑇 (𝑥,𝑦) can begin is at the start of span i, given

that span i is the first span after the𝐶𝑢𝑡 (𝑖−1,𝑖). Hence,𝑇 (𝑥,𝑦)
can, at the earliest, only begin at the start time of span i.

(2) The latest𝑇 (𝑥,𝑦) can end is at the latest end time of any span

before the𝐶𝑢𝑡 (𝑖−1,𝑖), which is at the end of span 𝑗𝑖 by defini-
tion and is included in𝑇 ( 𝑗𝑖 ,𝑖) since span 𝑗𝑖 ends before span 𝑖 .

(3) Therefore, any𝑇 (𝑥,𝑦) has to be a subset of𝑇 ( 𝑗𝑖 ,𝑖) which cre-
ates a contradiction as the candidate which is possible for

𝑃𝑎𝑖𝑟 (𝑥,𝑦) must also be possible for 𝑃𝑎𝑖𝑟 ( 𝑗𝑖 ,𝑖)

Hence, if we can guaranteeS1 to hold,S2 cannot be true. □

A.3 Illustrationof the various optimization steps.
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Figure 9:Constructingdelaydistributions (step 3) as described
in S4.1
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(ii) Transform candidate mappings into nodes
(iii) Add edges between nodes to add constraints.

Global Optimization
Across a batch of 3 requests in this example.
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(iv) Identify the maximal independent 
set (the best scoring set of mappings).

(i) Find candidates satisfying constraints.

Score = Aggr. Score (X, Y, Z)

Figure 10: Joint optimization (step 5) as described in S4.1
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